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POLAR GENERATION OF RANDOM VARIATES WITH
THE ¢-DISTRIBUTION

RALPH W. BAILEY

ABSTRACT. The “polar” method of Box and Muller uses two independent uni-
form variates in order to generate two independent normal variates. It can be
adapted so that two variates from Student’s t-distribution with parameter v
are generated, though the two variates are now not independent. An algorithm
based on the polar method is exact, inexpensive, and valid for all » > 0.

Box and Muller’s [1] polar method for generating random normal variates
relies on two convenient properties of the normal distribution, which we may
formulate as follows:

(i) Let X ~ N(0, 1). Then X can be regarded as the real part of a complex
random variable Z which has a radial distribution (the contours of the density
function of Z form circles centered at the origin);

(ii) Write Z=X+iY =Re'®. Then the distribution function Fz (= 1-Gg)
of R is a simple algebraic expression, so simple that it is invertible; that is,
given G = Gg(r), we can write down a closed expression for r in term of G.

The aim of this article is to show that properties (i) and (ii) are shared by
the Student t-distribution with parameter v (the t,-distribution) defined by the
density

(1) fr(x)=Bw/2,1/2)~ v~ 1V2 . (1 + x2/v)~+1/2,

Thus, we are asserting that the z,-distribution, like the normal, has a tractable
radial parent. If T has the density (1), we shall write “T ~ ¢, ”.

Many methods have been proposed for the generation of #,-variates. The
most important ones are described in Devroye [2, pp. 445-450], whose mas-
terly survey we shall not attempt to emulate. The faster algorithms may require
either a comparatively great programming effort, or the expensive recalculation
of certain quantities required by the algorithm, whenever v is changed. As
Devroye notes, problems arise when v is small and the departure from nor-
mality is greatest, particularly in the region 0 < v < 1, where many of the
algorithms fail to work at all.
~ So one would be interested in a theoretically simple and practically effective
generator, valid for any » > 0. We now show how the polar method may be
applied to the ¢,-distribution to yield such an algorithm.
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Definition. Let Z = Re’® be a complex random variable such that

(i) R and © are independently distributed;
(ii) © is uniformly distributed on [0, 27);
(iii) the probability that R (= |Z|) is greater than r is

(2) Gr(r)=(1+r/v)™"2,  r>0, v>0.

Then we shall say that Z has the radial t,-distribution
The point, and justification, of this definition is the following theorem:

Theorem 1. If Z = X + Yi has the radial t,-distribution, then the marginal
distributions of X and Y are given by X ~t, and Y ~ t,. The variates X
and Y are not independent.

Proof. By assumption, © has density 1/27, and R has, independently, the
density fr(r) = —dGr/dr = (r/v) - (1 + r*/v)™/>~1 . The transformation
x=rcosf, y=rsinf (which has Jacobian r) shows that the joint density of
X,Y is

() S, v(x, )= Q)" (14 (62 + %) /v) /L

Now integrate out y (note that the integrand is an even function of y and let
u=(14+y?/(v+x2))"!, expressing the integral as a multiple of a beta integral)
to confirm that the marginal distribution of fx(x) has indeed the required form
(1). The result for Y follows by symmetry.

The only complex radial distribution for which X and Y are independent
with continuous marginal densities is (Mathai and Pederzoli [5, pp. 9-12]) the
zero-mean, equal-variance, zero-covariance bivariate normal. Hence X and Y
in Theorem 1 are not independent. 0O

[One way of seeing this directly is to examine the distribution of Y condi-
tional on X . The density of this distribution at y is fyx(y) = fx,v(x,»)/
fx(x), and one finds, using the functions fy and fy y given by (1) and
(3), that fyx(») < (1 +y2/(v(1 + x2/v)))~/>~1, so that if we define V =
Y((1+1/v)/(1+ X?/v))/2, then X and V will be independent, X ~ t,, and
V~tyn]

Theorem 1 leads to our main result, the polar method for generating t,-
variates:

Theorem 2. Let G, H be iid variates, uniformly distributed on [0, 1]. Let
©=2n-H, let R= (G2 -1)1/2 (v >0), let X =Rcos®, and let
Y = Rsin®. Then X ~t, and Y ~ t,. The variates X and Y are not
independent.

Proof. Let Z have the radial ¢,-distribution. If we let G = Ggr(R), where
Gpr is given by (2), then we know that G is uniformly distributed on [0, 1].
Conversely, if G is uniformly distributed on [0, 1] and we take the inverse
transformation R = (v(G~% —1))!/2, then we know that Z = R exp(2niH) =
Re®' has the radial ¢,-distribution. Now apply Theorem 1. O

Theorem 2 is conceptually the simplest formulation of the polar method for
the t,-distribution. However, further improvements are possible. One can (see
for instance Marsaglia and Bray [4]) avoid expensive calculation of the cosine
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by using the fact that if U + Vi is uniformly distributed on the unit disk,
W =U?+V?,and C = U/VW, then W and C are independent, W has
a uniform [0, 1] distribution, and C has the same density as cos ©, thzt is,
fc(x) =1/n/(1 —x%), —1 < x < 1. We incorporate this modification into
our proposed algorithm, and note that Y in Theorem 2 is discarded, because
of dependence on X .

Polar algorithm for generating ,-variates.

(a) Generate iid uniform [0, 1] variates U and V. Replace U by 2U -1,
V by 2V —1.

(b) Define W = U2+ V2. If W > 1 return to (a).

(c)Let C=U/VW, R=w(W~"-1))//2, X =RC.
Then X ~ ¢, .

In order to sidestep one of the square-root calculations, we can rewrite (c) as

(c’)Let C2=U?/W, R*=v(W=2" 1), X =/(R2C?).

Thus, the only expensive steps in the polar algorithm are to calculate W—2/¥
and one square root, whose sign should be chosen at random.

As Neave [6] pointed out in connection with the original Box-Muller algo-
rithm, care must be taken if the uniform random numbers required by the
method (G and H in Theorem 2) are in fact pseudorandom numbers gener-
ated by the congruential method, as is currently almost invariably the case in
practice. Possible cures are surveyed in Golder and Settle [3]. In particular,
one can simply use two congruential generators, to different moduli (the “two-
sequence method”), to generate G and H . Golder and Settle show this to be
an effective cure.
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